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SUMMARY

After World War II, the evolution of Europe’s agro-food system has been marked by intensified use of syn-
thetic fertilizers, territorial specialization, and integration in global food and feed markets. This evolution
led to increased nitrogen (N) losses to aquatic environments and the atmosphere, which, despite increasing
environmental regulations, continues to harm ecosystems and human well-being. Here, we explore how
these N losses can be drastically reduced in a scenario synergistically operating three levers: (1) a dietary
change toward less animal products and an efficient recycling of human excreta; (2) the generalization of re-
gion-specific organic crop rotation systems involving N2-fixing legumes, making it possible to do without
synthetic N fertilizers; and (3) the reconnection of livestock with cropping systems allowing optimal use of
manure. This scenario demonstrates the possibility to feed the projected European population in 2050
without imports of feed and with half the current level of environmental N losses.
INTRODUCTION

The European agro-food system, tightly integrated into interna-

tional food and feed trade networks, is a paradigmatic example

of industrial agriculture shaped by the post-World War II Green

Revolution.1,2 Here, we refer to ‘‘Europe’’ (or ‘‘European coun-

tries’’) as the ensemble of countries located inside the outermost

borders of the current European Union thus including 540 million

people from the current EU27 plus UK, Norway, Switzerland,

Albania, Serbia, Montenegro, and North Macedonia. From the

end of World War II to the collapse of the USSR, voluntarist state

policies across Europe—despite the quite opposed conceptions

of economy in communist and capitalist countries—encouraged

the transformation of the structure of agricultural systems with

the sharedaimof increasingproduction in thenameofsocial prog-

ress, the explicit objective of providing universal access to afford-

able food.3–5

Synthetic nitrogen (N) fertilizer, produced using the Haber-

Bosch process, has played a major role in the intensification of

European agriculture by boosting crop productivity. However,

the increased N supply in agriculture also led to increased N los-

ses to the environment, causing multiple severe impacts on eco-

systems and human health through tropospheric air pollution,

stratospheric ozone depletion, greenhouse gas emission,

groundwater pollution, freshwater and coastal marine eutrophi-
cation, and loss of aquatic and terrestrial biodiversity. The Euro-

pean Nitrogen Assessment6 provides a comprehensive analysis

of nitrogen challenges in the European context.

The dominant agricultural policies in European countries have

greatly evolved over the last three decades. From the 1990s on,

after the collapse of the USSR, the focus has gradually shifted

from agricultural productivity toward more consideration for

environmental issues through regulations and economic incen-

tives. Meanwhile, the pursuit of territorial specialization has

been accelerated by market forces, fostered by increasing

integration of agricultural products in international trade

following the progressive abandonment of protectionist pol-

icies.7 One aspect of this specialization trend is the abandon-

ment of agriculture on less suitable lands,8,9 resulting in forest

expansion in regions less favorable for agricultural produc-

tion,10 and contraction of intensive agriculture on more favor-

able land.11,12

This trend of simultaneous intensification and land abandon-

ment, although mostly resulting from a purely economic logic,

has recently been justified from an environmental perspective

by opposing the land-sparing versus land-sharing alterna-

tives.13–16 The main argument put forward in favor of land

sparing—intensification on the best soils to leave more land for

natural areas—is that increasing the production per unit area

would allow providing food for a growing population while
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Figure 1. The agro-food system of Europe
and its trajectory from 1960 to 2013
(A) Changes in the population (black line) and land
cover.
(B) Changes in total nitrogen inputs to cropland
soils.
(C) The apparent yield-fertilization relationships for
cropland: each point represents the average Euro-
pean yield (Y) versus the total N inputs to cropland
soil (F) for each year since 1961, with its color rep-
resenting the decade. The data are fitted with the
relationship Y = Ymax. F/(F + Ymax).
(D) Geographical distribution of Ymax, the theoretical
maximum yield at saturating N input for each
country.
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limiting the spatial footprint of agricultural activities, hence

devoting more space to nature and biodiversity.

In this context it is increasingly recognized that European land

use patterns have global ramifications through international trade.

For example, as the new European Farm to Fork strategy17,18 ad-

dresses the ambitions of the EUGreenDeal of drastically reducing

N pollution, concerns have been raised that action to protect the

environment in Europe could result in increased pollution on other

continents, causing inequality across countries,19 e.g., in terms of

natural resource inputs, food/nutrient outputs, andnutrition/health

outcomes. Furthermore, food systems have been shown to be

responsible for one-third of greenhousegas emissions.20 Toavoid

this, Fuchs et al.21 advocate a reinforcement of the land-sparing

scheme through ‘‘sustainable intensification’’ approaches to

simultaneously increase productivity and reduce impacts inside

as well as outside Europe. Here, we explore a different approach,

based on agro-ecological land sharing, de-intensification, and

search for autonomy, within a systemic approach.

This paper proceeds in two steps. We first examine the past

50-year trajectory of the European agro-food system from the

point of view of the involved N fluxes. Starting from the analysis

of the current situation, we then explore a paradigm shift,

inspired by the land-sharing concept, and describe what an

agro-ecological future for Europe could look like in 2050, based

on a set of transparent and biophysically feasible assumptions.

We present a scenario implying a deep reshaping of the agro-

food system as a whole, quantifying the combined potential of

dietary change (toward a more healthy and frugal diet), general-

ization of agro-ecological farming practices22,23 (low nutrient

input agriculture), and increased circularity24 (crops and live-

stock reconnection). This scenario is an extension of previous

work developed for the cases of France and Spain,24,25 and for
840 One Earth 4, June 18, 2021
the whole of Europe.26 In the present anal-

ysis, we demonstrate that such a scenario

would substantially reduce agricultural N

pollution while providing healthy food to

the predicted population of Europe in

2050, with minimal recourse to imports.

The past trends of Europe’s agro-
food system
Our analysis is mainly based on country-

level data from FAOstat (http://www.fao.

org/statistics), processed following the
GRAFS (Generalized Representation of Agro-Food Systems)

approach as described by Lassaletta et al.27 The full dataset

and code generated during this study are available as an Excel

file (hereafter named XLSfile) at https://doi.org/10.6084/m9.

figshare.14610105.

From 1961 to 2013, Europe’s population increased from428 to

540million inhabitants. During the same period, the apparent per

capita protein consumption increased from 4.9 to 5.7 kgN/cap/

year. More importantly, the share of animal proteins (excluding

fish) in the consumption grew from 35% to 55%, which means

that per capita animal protein consumption increased by about

80%; however, with significant disparities between the different

countries (see section S2).While these trends imply an increased

demand for agricultural production, the area of agricultural land

gradually decreased (from 238 to 206 Mha), mostly in favor of

forested land (which increased from 484 to 501Mha) (Figure 1A).

Cropland N inputs increased across Europe from 1960 to a

peak in the 1980s and have since fallen on average

(Figure 1B), albeit with national differences. These changes

mainly lie in the application of synthetic N fertilizers. A rapid

drop in synthetic N fertilizer use occurred in the early 1990s, re-

flecting both the economic collapse of communist countries and

the emergence of environmental regulations in western coun-

tries, particularly focused on water pollution. These changes

occurred together with a shift in the relationship between N yield

and N fertilization of croplands.28,29 Between 1961 and 1985,

cropland yields generally followed a simple hyperbolic relation-

ship (Figure 1C), but as N inputs decreased from the 1990s,

yields did not decrease, and often increased, revealing another

relationship between yield and N fertilization. This shift suggests

a higher theoretical maximum yield at saturating N inputs (Ymax),

a trend already shown at the global scale.27 The value of Ymax

http://www.fao.org/statistics
http://www.fao.org/statistics
https://doi.org/10.6084/m9.figshare.14610105
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characterizes the potential productivity of cropland as the result

of pedoclimatic conditions, agricultural management, and crop

mix. In this paper, we use it as an overall indicator of the

geographical variation in potential cropland productivity across

Europe (Figure 1D).

The major N fluxes involved in the agro-food system of Europe

in the recent period are represented according to the GRAFS

approach30–33 in Figure 2. This representation highlights several

essential characteristics of the European agro-food system. The

first one is that the system is heavily dependent on synthetic N

fertilizer inputs ultimately resulting in N losses to the environment

from various compartments of the agro-food system. The sec-

ond feature is the large burden of livestock metabolism in the

overall agricultural N cycle. Livestock consume 75% of Europe’s

crop protein production in addition to 2.7 million metric tons of N

(TgN) per year in imported feed (19% of total livestock ration),

mainly maize from the USA, and soybean from South America,

contributing to deforestation.34 The size of this N import greatly

exceeds Europe’s N exports in cereals (0.398 TgN/year) and an-

imal products (0.030 TgN/year) to the rest of the world. Indeed,

while Europe has become self-sufficient in cereals, and even a

net exporter since the late 1990s, these exports are more than

outweighed by increasing imports of protein crops (Figure 3A).

A major driver for this increased dependency is the specializa-

tion of European countries (or of regions within these countries)

into either stockless cropping systems (i.e., specialized cropping

system with no or very limited livestock breeding, thus entirely

dependent on N synthetic fertilizers) or specialized intensive live-

stock farming systems. This is most clearly shown by an analysis

at sub-national territories,24,32,33,35–38 rather than at country level.

In specialized intensive livestock farming, local grass and crop

production is in most cases not sufficient for feeding the animals,

which makes the system dependent on long-distance feed trade.

The contribution of extra-national import of feed in total European

livestock nutrition increased from 12% to 20%between 1960 and

2015, while the share of permanent grassland grazing dropped
from 54% to 30% (Figure 3B; XLSfile). The

resulting decoupling of crops and live-

stock39 is also responsible for a suboptimal

use of animal excreta causing over-fertiliza-

tion of crops.

Agricultural N losses to the environment

occurmainly fromcropland (both to aquatic

environments and the atmosphere) and

from manure management and storage

(mainly to the atmosphere). For cropland

soils, a good proxy for N losses to the envi-

ronment is the N surplus, defined as the dif-

ference between total N inputs (manure, N

synthetic fertilizers, symbiotic fixation, at-
mospheric deposition, and urban sludges) and N export (har-

vested products). The average cropland surplus increased from

6.4 TgN/year (47 kgN/ha/year) in the early 1960s to 7.3 TgN/

year (63 kgN/ha/year) in the mid-2010s. Apart from a fraction of

the N surplus which can be stored within the soil organic matter

pool, most of the cropland N surplus is either leached to ground

and surface waters in the form of nitrate (NO3
–), volatilized as

ammonia (NH3) or denitrified, with a significant share emitted as

nitrous oxide (N2O), a potent greenhouse gas. For manure man-

agement, N losses to the atmosphere have been estimated to

2.5–3.5 and 3.5–4.5 Tg N/year in 1961 and 2013, respectively

(see details in Note S1). Roughly, the N losses associated with

agriculture have thus increased from 9.5 to 11.3 TgN/year during

the period 1961–2015.

Summing up, the development of European agriculture since

the 1960s, despite a clear inflection following successive re-

forms of the EU Common Agricultural Policy (e.g., 1984, reduc-

tion of surpluses, implementation of production quotas; 1991,

land set-aside) together with more environmental regulations

around 1980–2000, is still characterized by a logic of intensifica-

tion on reduced cropland areas and specialization of activities in

the most suitable territories, denying the advantages of their

possible complementarity and resulting in huge environmental

losses of reactive N. These now amount to 77% of the total

new N imported to the system (as N fertilizers, symbiotic fixation,

atmospheric deposition, and import of feed). Therefore, the

observed trajectory of Europe’s agro-food system is character-

ized by a low overall nutrient use efficiency (NUE) and damaging

N losses to the environment, threatening water, air, and soil qual-

ity as well as contributing to climate change (see the European

Nitrogen Assessment5 for a comprehensive assessment).

An agro-ecological scenario for Europe in 2050
Faced with this increasing openness of the N cycle associated

with the European agro-food system, the need for a profound

structural change is imperative. Previous studies25,40,41 showed
One Earth 4, June 18, 2021 841
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that a strong reduction of N environmental losses can be

achieved by operating three main levers: (1) changing the

composition of human diets and an efficient recycling of human

excreta; (2) using agro-ecological practices to avoid the use of

synthetic N fertilizers; and (3) reconnecting livestock farming to

cropping systems (with livestock feeding only relying on local

production of grass and fodder resources), thus ensuring the

availability of N from manures as fertilizers for crops. For each

of these levers, we adopt transparent assumptions relying either

on already observed strategies (e.g., organic farming practices)

or on realistic proposals from the literature (e.g., diets). Operated

synergistically, these levers unlock a fundamental agro-ecolog-

ical transformation for Europe.

Toward more frugal and healthy diets

FAO42 predicts an increase of the European population by 12% at

the horizon 2050 (mediumscenario).More important for predicting
842 One Earth 4, June 18, 2021
human food requirements is the hypothesis

made regarding dietary choices. Numerous

studies have proposed ‘‘desirable’’ diets in

future scenarios of the agro-food system

at different scales. A few of them are sum-

marized in Table 1. More interesting than

the numbers themselves is the approach

taken to get to define these diets.

The starting point of the scenarios pro-

posed by the EAT-Lancet report45 is the

prescription of a ‘‘reference healthy diet’’

based primarily on health considerations.

Compared with the current European diet,

it implies a strong reduction of total protein

intake and of the share of animal products,

particularly that of dairy products and beef

meat, leaving poultry and pork as the main

suppliers of animal products. The Afterres

205046 scenario for France similarly defines

an a priori desirable human diet, but with

much higher contribution of dairy products.

The TenYears For Agroecology scenario for

Europe26 is on the same line, as its main

objective is to maintain and develop grass-

land areas and extensive ruminant livestock

farming.

The ‘‘Nitrogen on the Table’’ ENA

report47 does not prescribe a particular

diet, but tests scenarios of 50% reduction

in the consumption of (1) beef and dairy
products, or (2) pork, poultry, and eggs, or (3) all types of animal

products excluding fish. The corresponding caloric intake is re-

placed by increased cereal consumption. Billen et al.43 tested

a large number of combinations of per capita total protein intake

and share of animal protein at the global scale to define the

‘‘equitable diet,’’ i.e., a diet that can be shared by the global hu-

man population in 2050 at the current agricultural production ca-

pacity. A different approach is offered by the ‘‘ECOLEFT’’

method48,49 based on the concept of ecological leftovers for live-

stock production: arable land should be used primarily to pro-

duce plant-based food for humans, and livestock should be

fed on biomass not suitable for humans, such as grass from

semi-natural grassland and by-products from crop production

and food processing. The productive potentials of each territory

then define the suitable human diets. This approach was applied

to Sweden49 with three variants: (1) intensive milk production, (2)



Table 1. Comparison of several human diets (in terms of apparent consumption) currently observed or prescribed in prospective

scenarios

Apparent N

consumption Cereals Legumes

Fruits and

vegetables

Animala (fraction

of ruminants) Seafood

kgN/cap/year % of total % of total % of total % of total % of total

European diet (this work)

1961–1965 5.2 45 5

2009–2013 6.1 29 0.8 55 (0.51) 6

EAT-Lancet, Worldb (Willett et al.45)

reference healthy diet 5.7 35 21 4 33 (0.16) 7

Afterres 2050 (Couturier et al.46)

France 4.9 51 4.6 11.7 31 1.7

TYFA (Poux and Aubert26)

France 5.1 43 3 13 38 (0.62) 3

Nitrogen on the Table (Westhoek et al.48)

EU27 reference 6.0 31 0.4 9.6 51 (0.57) 8

50% milk and red meat 5.7 42 0.4 10.6 39 (0.40) 8

50% eggs and white meat 5.8 40 0.4 10.6 41 (0.72) 8

50% all animal products 5.4 52 0.4 11.6 28 (0.57) 8

World equitable diet (Billen et al.43)

High animal diet 4 40

Low animal diet 5 25

ECOLEFT, Sweden (Garnett et al.,48 RÖÖs et al.49)

Reference Sweden 5.0 25 0.5 47 12

Intensive milk diet 4.1 48 1.7 14 15

Extensive milk diet 4.2 52 2.8 22 14

Suckler diet 3.9 59 4.2 22 15

2050 European healthy diet (this work)

agro-ecological scenario 5 45 10 15 25 (0.67) 5
aExcluding fish and seafood. The share of ruminants (meat + milk) is shown (italics), expressed as a fraction of total animal (non-fish) proteins.
bConverted into apparent consumption (supply) values using the coefficient derived from Esculier et al.44
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extensive milk production, or (3) extensive beef meat production

with eggs and pig meat production.

In this paper’s scenario, we assume fixed common per capita

apparent protein consumption for all European countries, namely

5 kgN/cap/year, of which 45% cereal products, 15% fresh fruits

and vegetables, 10% grain legumes, and 30% animal products

(meat, milk, eggs, and fish), close to the equitable diet defined

above, consistent with FAO-WHO50 recommendations and

roughly in the middle of the various recommendations presented

in Table 1. The rationale for assuming the same diet for all Europe

is the convergence in the diets of the different countries since

1960 (see Note S2). What varies regionally, according to specific

geographical and cultural features, is the proportion of fish and

seafood, aswell as the share of livestock products from ruminants

(beef, mutton meat, and milk) versus monogastrics (pork, poultry

meat, and eggs) in each country. These specificities are kept at

their relative value in the 1960s, considered as still representative

of the geographic and cultural differences between countries.

Agro-ecological practices and crop rotations

Agro-ecological practices, including organic farming, have been

developed as an alternative to ‘‘industrial agriculture,’’51 strictly

banning the use of synthetic inputs (fertilizers and pesticides).
There is quite a large diversity of agro-ecological systems world-

wide, as these are based on subtle mix and exchanges of farmer

and scientific knowledge strongly linked to territorial peculiar-

ities.23,52 Moreover, the innovation capacity of farmers is an

important aspect for the adaptability and performances of these

systems in a changing world.53,54 However, establishing a hypo-

thetical agro-ecological scenario at the 2050 horizon has to rely

on systems that have already been tested and have proved their

worth in the various regions of Europe. Our scenario is therefore

based on a typology of existing organic systems, which currently

cover about 8% of the total agricultural area of EU27.55

Here, we mostly deal with cropping systems on arable land,

leaving apart permanent crops as well as market gardening sys-

tems, which function according to a rather different logic. In the

scenario, for each country, the area of permanent grassland and

permanent crops has been kept constant, and a small fraction of

arable area has been devoted to market gardening to meet the

domestic needs for vegetables defined according to the pre-

scribed diet and the organic gardening productivity figures pub-

lished by Anglade et al.56 What follows concerns the remaining

part of cropland area, which is by far the largest part (60%) of

the agricultural land.
One Earth 4, June 18, 2021 843
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A B Figure 4. Organic farming systems in Europe
(A) Typology of dominant crop rotations in organic
cropping systems in Europe, based on the duration
of the rotation cycle and the nature of the main N-
fixing crop.
(B) Mean of soil N input through symbiotic N fixation
integrated over the whole rotation cycle of arable
cropping systems described in (A) (see Note S3 for
details and references).
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Based on an extensive literature compilation of crop rotations

in organic farming systems in European countries (Note S3), a

map of the major organic crop rotations currently in use in Eu-

rope has been established (Figure 4A). It relies on two criteria:

(1) the length of the rotation and (2) the nature of themain N-fixing

crop. In temperate western and central regions of Europe, long

crop rotations (over 5 years), with 2 or 3 years of temporary

sown grassland, such as clover, alfalfa, or mix grass and le-

gumes, preceding cereal crops are the prevalent systems.

They may or may not include grain legumes in the rotation, but

these latter are not the dominant N-fixing crop. In the

Netherlands, however, long crop rotations alternating vegeta-

bles, cereals, and grain legumes are widespread. In Nordic

countries, Great Britain and Ireland, leys, i.e., sown grasslands,

made of grass and clover mix (with typically 20%–35% clover),

provide the main N supply of long and diversified rotations.

Leys are harvested for silage as well as grazed by livestock

and plowed after 2–4 years, for sowing annual crops, commonly

cereals. In Southern European countries, where water scarcity

prevents the development of abundant grass and forage legume

crops, pulses (such as peas, chickpeas, lentils, vetches, and

fava beans)—most often harvested for grains or sometimes

used for hay or green manure and undersown with cereals—

are the basis for N supply to the rotation, generally limited to 2-

to 4-year cycles. Soybeans, although less adapted to arid condi-

tions, are commonly used in crop rotations in Italy. Simple fallow,

with ample spontaneous development of weeds are often grazed

and can be considered as sort of leys under semi-arid condi-

tions. Of course, under irrigation, other crop rotations are

possible, including alfalfa or grass/clover cover crops.

Anglade et al.57 and Billen et al.25 have shown that organic and

conventional cropping systems under the same pedoclimatic

conditions follow the same yield-soil N input relationship. The

Ymax values characterizing current conventional systems

(Figure 1D) therefore also apply to organic crop rotations. The

overall yield of these crop rotations thus depends on their

average N supply. In organic farming, besides N inputs from an-

imal manure and atmospheric N deposition (see below), N is

introduced mainly through symbiotic fixation by the legume

crops inserted in the rotation, which gives farmer autonomy in

terms of fertilizers. Symbiotic N fixation for each of the crop ro-

tations described in Figure 4A has been calculated from the N
844 One Earth 4, June 18, 2021
content of legume crop yields according

to the simplified method of Anglade

et al.,58 as proposed by Lassaletta et al.28

(Note S3; Tables S4 and S5). It ranges

from 20 to 100 kgN/ha/year across the

different European countries considered

here (Figure 4B). By applying current Ymax
values for 2050, we choose a conservative approach for our sce-

nario, considering that likely future technological improvements

shall first aim at offsetting the negative impacts of future climate

change, particularly in Mediterranean climate areas of the South

of Europe.59 In other parts of Europe, the overall effect of climate

change might be positive.60

In addition, we assume N input from the recycling of a sub-

stantial fraction (70%) of human N excretion. Patel et al.61 and

Martin et al.62 have recently reviewed the available technologies

for recovering nutrients from source-separated human urine,

which contains 80%of N excretion,44 and have advocated for re-

using them as fertilizers. Note that this reuse would imply that the

current prohibition of human excreta in the European organic

farming regulation would be lifted.

Crop-livestock reconnection for circularity

In agro-ecological systems, livestock is not only needed for

providing meat and milk; it is also the agent able to convey nu-

trients from grassland to arable land and from N-fixing crops to

other crops.63 In this way, as no synthetic N fertilizer inputs are

considered and as symbiotic fixation is fixed a priori by the

choice of a crop rotation scheme (see above), livestock density

remains the only lever of intensification of organic cropping sys-

tems, through the application of manure. To ensure full connec-

tion with cropping systems, livestock must be fed locally,

without import of feed from distant origin, and its excreta re-

turned to cropland and grassland. In the present scenario, the

N inputs to cropland as manure have been established consid-

ering the losses during management and application (see

Note S3).

Atmospheric total N deposition (as both wet and dry deposi-

tion) also contributes to cropland N inputs. Although most of

the deposition comes from car traffic and electrical power gen-

eration from fossil fuels, a part also comes from livestock sys-

tems (up to 20% in livestock-dense regions), as demonstrated

for French regions33 (see Note S3; Figure S7).

In summary, in addition to symbiotic N2 fixation, which is the

only major net source of N in organic agriculture, livestock den-

sity influences cropland productivity by enabling a strategic re-

circulation of manure N, and thereby the capacity to locally pro-

vide food and feed. Livestock is also a key determinant of

environmental N losses, through the resulting surplus and the

direct atmospheric N losses linked to manure management



Table 2. Systemic hypotheses and constraints of the agro-

ecological scenario for Europe in 2050

Human

nutrition

and

excretion

Population: 601 million inhabitants

Diet:

5 kgN/cap/year with 45% cereals, 10% grain

legumes, 15% fruits and vegetables

25% animal excluding fish, 5% fish and sea food

Recycling 70% of human excreta

Cropping

systems

No changes in land cover

Generalization of currently used organic crop

rotations in the different climatic zones of Europe

(Figure 4)

No synthetic N fertilizers

Production calculated from total N input, using current

Ymax for each country

Livestock Fed with local production of grass and fodder (no

import of feed)

Manure recycled to grassland and cropland, with a

maximum cropland N soil surplus of 35 kgN/ha/year

for ‘‘good’’ water quality
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and application.64 Given a limit on environmental N losses, the

maximum allowable livestock density can be calculated. Here,

we used arable cropland soil N surplus as a simple proxy for

environmental N losses, and set its maximum admissible value

at 35 kgN/ha/year. This upper limit guarantees a groundwater

recharge concentration below 50mgNO3/L (�11.3mgN/L) under

temperate climate conditions—the threshold established by the

EU nitrate directive—with 200 mm/year subsurface runoff,

considering leaching of about 70% of the surplus.30

Scenario construction and assessment

The main systemic hypotheses and constraints defined above

for the establishment of the agro-ecological scenario are sum-

marized for the three major levers (Table 2).

To define the N fluxes characterizing the agro-food system in

the scenario, the following procedure is applied. The livestock

density in each country is assumed as the maximum that can

be fed domestically within the stated environmental targets

related to N losses. Livestock composition in terms of proportion

of ruminants and monogastrics is taken for each country as it

was in the 1960s, a period considered here, by lack of other

data, as a reference for the traditional state of the agriculture.

Grasslands and forage legumes (in pure stands or mixed with

temporary grassland) are the only sources of feed for ruminants

and also supplies 25% of monogastric ingestion, as shown

possible by many recent studies.65–70 These assumptions result

in strongly reducing the livestock density compared with the cur-

rent situation and a more even distribution across European

countries (Figure 5A). Cropland production is calculated for

each country from the total soil N input, based on the currently

observed yield-fertilization relationship and its Ymax parameter

(Figures 1C and 1D).

The XLSfile provides the details of the calculations and the re-

sults for each country. Figure 5 shows the resulting distribution of

livestock density (Figure 5B), and atmospheric N losses linked to

the management of livestock excreta are reduced by 53%. N

surplus is reduced by 57% of its 2013 value.

In the scenario, the total production of the crop rotation,

calculated for each country as indicated above, is allocated
to either legume crops or cereals (and other non-legume crops)

according to the stated yield of legumes (independent on N in-

puts) and the frequency of the different crops in the rotation. As

underlined by Barbieri et al.,71 this leads to a much lower ce-

reals production than the current conventional agriculture.

This reduced availability, however, is compensated by much

lower animal consumption of cereals and a lower share of ani-

mal products in the diet.

Surpluses or deficits of vegetal and animal products are

calculated in each country from the balance between produc-

tion and requirements of humans and livestock. With the con-

straints imposed, some densely populated countries cannot

meet their own needs in animal or vegetal proteins, despite

the frugal diet assumption and the reduction in livestock. In

that case, the supply is complemented by imports from neigh-

boring European countries or, if needed, from outside Europe.

In the opposite case, exports are assumed. Overall, in the sce-

nario described here, trade between countries (Table 2) is

roughly halved compared with today, owing to the scenario

constraints aiming as far as possible at self-sufficiency (Table

3). Net exports of cereals and animal products outside of Eu-

rope continue at a level of around, respectively, 7% and 36%

of the current ones.

The budget and the full representation of N fluxes through

the agro-food system for the whole of Europe in the 2050 sce-

nario are shown in Figure 6. These results can be compared

with the present situation illustrated in Figures 2 and 3A.

The most striking differences lie in (1) the absence of synthetic

N fertilizers, (2) the lower environmental N losses, and (3) the

absence of feed import, while a small export of cereals and

animal products outside Europe is still possible. This scenario

thus demonstrates the possibility to feed Europe in 2050 with

a healthy diet, using agro-ecological farming practices without

dependency on synthetic N fertilizers (and pesticides) and im-

ported protein feed, and with considerably reduced threats to

water resources and air quality. Note that this scenario also

strongly differs from the agro-food system in the 1960s by a

higher NUE, less dependency upon food, and feed imports

(Figure 5B), and even lower N leakage to the environment

(Figure 6B).

This scenario does not pursue the objective ofmaximizing pro-

ductivity. Rather than sparing land, it aims to locally close N cy-

cles and could hence be termed nitrogen sparing. To be truly bio-

physically consistent, this paradigm should be extended to

nutrient sparing, thus including other nutrients, such as phos-

phorus (P) and potassium (K). The specificity of the biogeochem-

ical cycle of P and K, namely the facts that they do not have

gaseous forms and are quite immobile in the soils, would require

to account for the soil reserves and past legacy.72,73 Although

such amulti-nutrient approach was not developed in the present

paper, it has been shown74 that moving toward an agro-ecolog-

ical scenario would be feasible in the next three decades without

phosphorus shortage for such an intensive agricultural country

as France.

While not excluding food trade when required, the scenario

privileges local food supply. This implies giving up land special-

ization in favor of a multifunctional conception of land planning.

In this sense, the scenario described here falls within the land

sharing paradigm, in which each country or territory aims at
One Earth 4, June 18, 2021 845
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Figure 5. Comparing the agro-ecological
scenario with the current situation
Livestock density and cropland surplus Livestock
density (in LU per ha total agricultural area) (A) and
cropland N soil surplus (B) in the current situation
(average 2009–2013) and in the agro-ecological
scenario.
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delivering the largest possible basket of the required food prod-

ucts, while preserving water resources and air quality; this

commitment to the territorial de-specialization of agricultural ac-

tivities leads to more landscape biodiversity, thereby offering

more habitats for non-cultivated species than a specialized agri-

cultural territory.
Table 3. Total European gross traded volume (i.e., sumof imports

and exports) between European countries and with other

countries, and net import for cereals, oilseeds, fruits/vegetables,

and animal products in the periods 1961–1965, 2009–2014 and in

the agro-ecological scenario

Total traded volume,

GgN/year

EU net import,

GgN/year

1961–

1965

2009–

2014

Scenario

2050

1961–

1965

2009–

2014

Scenario

2050

Cereals 682 1,228 608 585 �398 �27

Oilseeds

and forage

625 2,745 0 624 2,678 0

Fruits and

vegetables

77 113 0 61 74 0

Animal

products

88 410 248 30 �267 �97

846 One Earth 4, June 18, 2021
CONCLUSION

We show in this perspective paper, that a

fundamental agro-ecological transforma-

tion of European agro-food systems is bio-

physically possible. While not providing

directly actionable information for current

policy negotiations, our analysis informs

about the biophysical option space of sus-

tainable food production and consumption

in Europe. A legitimate question about the

scenario explored here is whether it has

the potential of being generalized globally,

from a purely biophysical point of view,

given the rapidly growing world popula-

tion. If not, the search for European self-

sufficiency could be seen as a selfish posi-

tion, denying Europe’s role in addressing

the global environmental challenge.

However, Europe today is a net importer

of proteins from other continents (Figures 2

and 3). Its large imports of protein crops for

feeding livestock are far from balanced by

the small amounts of proteins exported in

cereals and animal products, even ac-

counting for the vegetal to animal conver-
sion efficiency. Therefore, shrinking Europe’s integration in world

markets would actually relieve some pressure from agriculture

outside of Europe.

Based on similar hypotheses as the ones made in the present

work, Lassaletta et al.27 developed a scenario for the global

agro-food system at the scale of 12 macroregions in the world

at the 2050 horizon. They assumed an equitable diet of 4 kgN/

cap/year with 40% animal proteins, preference for animal feeding

on the currently available grass and fodder production without

feed import, symbiotic N fixation adjusted to the local agronomical

possibilities, and recycling of human excreta. International trade

was considered to only fill the uncovered needs of some macro-

regions. With these hypotheses, the world population could be

fed in 2050 with much less international trade and much less N

pollution than predicted by ‘‘classical’’ prospective scenarios link-

ing diet to GDP in each country, considering agricultural speciali-

zation according to competitive advantages of each country, and

adjusting synthetic N fertilizer use to the national needs and eco-

nomic possibilities.75–80 Several authors43,81–83 have explored the

‘‘option space’’ of the world agro-food system for diverse human

diet and cropping systems intensity while feeding the world pop-

ulation and maintaining unchanged the current total agricultural

land, thus avoiding any deforestation. These analyses show that

there is a vast range of options for feeding the future world
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population, and that human diet (in particular, the level of animal

protein consumption) rather than crop yield is the strongest deter-

minant for that possibility.

The invention, one century ago, of the Haber-Bosch process,

and the generalization of industrially synthesized N fertilizer as

the basis of the ‘‘Green Revolution,’’ in the second half of the

20th century, have often been hailed as major breakthroughs

for humanity. As early as 1924, Lotka84 wrote: ‘‘This extraordi-

nary development [of the nitrogen fixation industry] represents

nothing less than the ushering in a new ethnological era in the

history of the human race, a new cosmic epoch.’’ Several au-

thors85,86 have estimated that half of humanity’s food supply

depends on Haber-Bosch N fixation. As a matter of fact, this

process has put the global agro-food system on an industrial

socio-ecological trajectory from which we now have great diffi-

culty to escape. The success of the Haber-Bosch process and

the Green Revolution was such that, for a long time, very little

resources were invested in the development of more sustain-
able agro-ecological options, such as those exposed in

this paper.

EXPERIMENTAL PROCEDURES

Resource availability
Further information and requests for resources related to this paper should be
directed to the lead contact, Gilles Billen (gilles.billen@upmc.fr).

Materials availability
This research did not produce any new material.

Data and code availability
All the datasets, codes, and algorithms generated during this study are avail-
able as a single .xlsm file in the FAIR-aligned Figshare repository at address:
https://doi.org/10.6084/m9.figshare.14610105.

Methods and hypothesis for assessing N fluxes
N fluxes through the agro-food system of European countries are calculated
from FAOstat data from 1961 to 2013 according to the GRAFS approach.27

A summary of the main methods and assumptions is presented in Note S1,
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together with some specific calculations related to the case of Nordic coun-
tries for which inconsistencies exist in the FAO data regarding arable fod-
der crops.
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Supplemental Notes 

 
Note S1. Methods and hypothesis for assessing N fluxes 

 

 
Crop production calculation includes all annual and perennial food and feed crops (grouped as 
cereals, fodder, fruits and vegetales and others). Detailed  N contents used to calculate N harvest are 
from Lassaletta et al

1
.  

 
Total N inputs to arable land include synthetic fertilizer application (corrected for estimation of fertilizer 
application to grassland 

2
), symbiotic N fixation (estimated according to the approach developed by 

Anglade et al 
2,3

), manure application (calculated from animal excretion according to Lassaletta et al
2
) 

and atmospheric deposition obtained from Dentener et al
4
. 

 
Grass production is defined as grass consumed by ruminants (in terms of N), calculated from the 
food and feed balance of each country:  

Grassland production (including scavenging and swill uses) = human needs of vegetal proteins + 
animal ingestion - local crop production – net import of crop products (equ 1) 

This approach was developped by Lassaletta et al 
5
. Uncertainties, limitations and comparisons with 

other models are provided in the supplements of that paper. Our estimates of grass production (except 
for Nordic countries, see below) are generally in good agreement with estimates from other 
approaches.  
 
Animal excretion is calculated from the number of animal headsof ruminants (cattle, sheep, goats 
and other ruminants) and monogastrics (pigs, poultry and other domesticated birds) using time- and 
region-specific excretion coefficients. A fraction of the excreted N is applied to crops as estimated by 
Lassaletta et al 

2
 with some correction for The Netherlands, Ireland and United Kingdom.  

 
Total livestock production is the N content of produced carcasses, milk and eggs, skins, offals and 
fats. Edible  fraction of each products is taken into account for calculating edible production.  
Livestock ingestion is calculated as the sum of excretion plus production. 
  
Ammonia volatilization is calculated as 30% of the excreted N that is stored and managed before 
spreading of manure

6,7
. The calculations were made separately for ruminants and monogastrics.  

 
Cereal consumption by livestock is estimated from the food and feed balance of each country: 

 Livestock cereal consumption  =  total cereal production + net import - human consumption (equ 2) 
The N fluxes in trade are estimated from the N content (protein-N) of traded agricultural products.  
 

 
In Norway, Sweden, and Finland, about 30-50% of the cropland is used for cultivation of roughage 
fodder. This area is dominated by temporary grassland, more specifically perennial grass-clover 
mixtures, in rotation with other crops. This temporary grassland, and other fodder crops, are 
incompletely covered by the FAOSTAT fodder crop dataset used for most countries in this paper. 
Therefore we have used various other data sources to assemble a dataset on arable fodder crop 
production in these three countries. 
 
Specifically, we have estimated the cultivated area, N harvest, and symbiotic N fixation of the main 
arable fodder crops in these three countries 1961–2013. 
The analysis covers, to the extent possible, the crops included in the Eurostat crop category G0000 
“Crops harvested green from arable land”, which is subdivided as follows: 
 

G0000 Plants harvested green from arable land 
 G1000 Temporary grasses and grazings 
 G2000 Leguminous plants harvested green 
  G2100 Lucerne 
  G2900 Other leguminous plants harvested green n.e.c. 



 

 

 G3000 Green maize 
 G9000 Other plants harvested green from arable land 
  G9100 Other cereals harvested green (excluding green maize) 
  G9900 Other plants harvested green from arable land n.e.c. 

 
Where possible, we used area data from Eurostat’s Annual Crop Statistics

8
  to cover the crop codes 

G1000, G2100, G2900, G3000, and G9000. Data gaps were filled using data from national statistical 
databases

9,10,11
. Minor remaining data gaps were filled by extrapolation backwards from the earliest 

available value. The data collection includes the following crops: in Norway, G1000; in Sweden, 
G1000, G3000, G9000; in Finland G1000, G2900, G9000. 
 
The N harvest (including grazing) of each crop was estimated as 
     harvest (GgN) = area (Mha) · yield (Ggdrymatter/Mha) · N content (GgN / Ggdrymatter).(equ 3) 
 
Yields were based on Eurostat’s annual crop statistics

8
. Eurostat and national databases report time 

series of production, but these time series are incomplete and furthermore not fully comparable over 
time. However, based on the available data

9,10
. it appears that yields in temporary grassland, the 

absolutely most important fodder crop in all three countries, have been roughly constant over the last 
50 years. We therefore used the average of available yields from the Eurostat annual crop statistics 
2000-2017. In Norway, the dry matter content of crop code G1000 was not reported but assumed to 
be 85% since national yield data are normalized to hay units

9
.  

 
A complication with the yield levels of temporary grassland (G1000) is that these grasslands are both 
mechanically harvested and grazed. Some areas are only mown, others are only grazed, and some 
are mown one or more times and then grazed in the late season. The available harvest statistics for 
G1000 appear to account only for mowing which means that they underestimate the total crop 
production. Relevant data to accurately estimate the grazing component are very scarce, but a recent 
investigation of Swedish data suggest that the grazing contributes about 20% in addition to the 
mechanical harvest

11
. At least in Finland and Sweden, similar proportions of temporary grassland are 

used exclusively for grazing
10,12

. Based on this, we inflated the Eurostat based G1000 harvest data by 
20% across all three countries. 
 
N contents of the fodder crops were assumed according to Table S1. 
 
Table S1: Assumed composition of fodder crops. 
 
Eurostat 
crop code 

N content 
(% of DM) 

Comment References 

G1000 2.3 80% grass (2.0% N), 20% clover (3.3% N) 
13, 14, 15, 16 

G2100 3.0  
16  

G2900 3.2 90% clover (3.3% N), 10% grass (2.0% N) 
16,17, 18, 19 

G3000 1.2  
20, 21 

G9000 2.0 75% cereal forage (1.6% N), 25% legumes (3.0% N) 
22, 23, 24 

 
Symbiotic N fixation was calculated assuming the legume shares given in Table 1, and using the 
same model for symbiotic N fixation as elsewhere in this paper

2,3
 .  

 
  



 

 

Note S2. Past trajectory of human diet 
 
 
 
Human diet can be estimated as the amount of food actually ingested (actual consumption, i.e., the 
plate content) or as the amount economically consumed (the supply, i.e., the basket content). FAO 
data, as well as most national data from economic studies, are issued from availability calculations 
and refer to the latter, thus including food wastes at the final consumption level (basket content). 
Dietetic recommendations issued from Public Health organisms, or data issued from individual 
inquiries, refer to the former (plate content).  
 
The distinction between supply and effective consumption has been looked at for the case of 
France

25
, allowing to estimate losses at the final consumption stage, differing between animal and 

vegetal products (Table S2.1). In the current work, final consumption is defined as supply, thus 
including losses at the consumption stage.   
 
 
Table S2. N composition of per capita food supply, actual consumption and losses in France in 
2001-2009 

25
 

 
 Supply Effective consumption Losses 
 kgN/cap/yr  (% total supply) kgN/cap/yr  (% total consumpt) kgN/cap/yr  (% total losses) 

Seafood 0.7 0.3 0.4 
Dairy and eggs 1.7 1.0 0.7 
Meat 2.8 2.1 0.7 
Fruits and vegetables 0.7 0.4 0.3 
Cereals 1.3 1.1 0.2 
Total animal 5.3 (72%) 3.5 (71%) 1.8 (75%) 
Total vegetal  2.0 (28%) 1.4 (29%) 0.6 (25%) 

Total 7.3 (100%) 4.9 (100%) 2.4 (100%) 

 
 
The analysis of the FAO data reveals a rapid increase of per capita supply of total protein apparent 
consumption in most countries of Europe, from a mean of 5.2 kgN/cap/yr in the early 1960s to 6.1 
kgN/cap/yr in 2013. Czechoslovakia and Bulgaria are the only countries having experienced a slight 
decrease in total protein diet during the period (Figure S1) 
 
The share of animal products (excluding fish and seafood) in this diet has also increased in all 
countries, except in UK and Ireland. The average value increased from 44% to 52% during the period 
from 1961 to 2013; Mediterranean countries (Italy, Greece, Spain, Portugal, Cyprus) but also Romania 
and Bulgaria, are those where the increase in animal products in the diet was the most significant, 
reflecting the abandonment of a traditional Mediterranean diet (with 25-30% animal products excluding 
fish) in favor of a standard modern western diet

26
 (Figure S2) 

 



 

 

 
 
Figure S1. Total per capita intake in European countries in the early 1960s and in 2009-2013 
(FAO data) 

 
 

 
 
Figure S2. Fraction of animal products (excluding fish and seafood) in total per capita intake in 
European countries in the early 1960s and in 2009-2013 (FAO data) 
 
 
Within animal products (excluding fish) currently consumed in Europe, the share of ruminant 
products (milk, cheese, beef and mutton and goat meat) dominates over that of monogastric products 
(eggs, poultry and pig meat), representing about 56%, with strong contrasts between countries (Figure 
S3). 
 

1961-1965 2009-2013

1961-1965 2009-2013



 

 

 
 
Figure S3. Share of ruminant products (milk, cheese, beef, mutton and goat meat) in total animal 
protein consumption (excluding fish and sea food) in 2010 

2.
. 

 
 
The share of fish and seafood in total protein diet did not change a lot since the 1960s. As a mean, it 
currently represents 6% of total protein diet in Europe. Large disparities between countries reflect 
strong cultural differences (Figure S4).  

 
 

 
 
Figure S4. Share of fish and seafood products in total protein consumption (FAO data). 
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Note S3. An analysis of current agro-ecological cropping systems 

in Europe and their N supply 
 
The agro-ecological scenario established in this work was based on the analysis of currently used 
organic farming practices in Europe, which have proved their worth and sustainability despite a 
reduced production in cereals, but much less exogenous fertilizer inputs. This note presents the data 
available to establish a typology of organic crop rotations in the different European countries, as 
well as to quantify their level of nitrogen supply.  
 
 
Eurostat

8
 provides data on the arable area under organic farming, distinguishing between cereals, 

dry pulses, root crops, industrial crops and plants harvested green from arable land. Pulses and fodder 
legumes harvested green represents the N fixing components of the rotation. Pulses and plants 
harvested green most often account for more than 60% of the total arable area under organic farming 
in Nordic countries, UK, Slovakia and Portugal. Pulses cover less than 20% of total N fixing areas, 
except in Romania, Bulgaria and Mediterranean regions of Greece and Spain. In the latter country 
they reach more than 50% of the total N fixing area.  
 
Unfortunately, the Eurostat data do not provide a comprehensive picture of the main organic rotations 
in European cropping systems.  
 
An extensive literature compilation of crop rotations in organic farming systems in European 
countries was therefore undertaken (Table S3). It complements the data already gathered for France 
and Spain

28
, as well as for the whole of Europe

29,30
. 

 
Based on this information, a tentative map of the major organic crop rotations in current use in Europe 
has been established (Figure S5), relying on two criteria: the length of the rotation and the nature of 
the main N fixing crop. 
 
   

 
 
 
Figure S5. Tentative map of dominant crop rotations in organic cropping systems in Europe. 
 
 
 



 

 

Table S3. Crop rotations in arable organic cropping systems in different regions of Europe, 
described in the literature. The rotations effectively used in commercial organic farms are given 
priority. Those in agronomic assays are only included if it was stated that they are representative of 
commercial farms. 
 
Country /Region Rotation nb years refs 

France     
   (Paris basin) Alf(x2) - wWh - Cer2 - other - GrL – wWh - Cer2 8 

31,32,33 

   (Normandy) Clo(x2) - Maize -wWh - GrL - wWh - Cer2 7 
34 

   (N-Pas-de-Calais) Alf-Potato - wWh - GrL - wWh - Cer2 6 
34

 
   (Grand Est) Ley(x2) - wWh - Cer/GrL - wWh - Cer2 6 

34
 

   (Alsace) Alf(x2)-wWh - Cer2 - Cer3 - Soy(x2) - Maize - Cer2 9 
34

 
   (Britanny) Clo(x2) - Maize - wWh - Cer2 - GrL - wWh - Cer2 8 

34
 

   (Vendée, Charente) Soy - wWh -  Maize - GrL - wWh - Maize 6 
34

 
   (Loire Aval) Clo(x2) - Maize - GrL - wWh - other 6 

34
 

   (Loire Centrale) Alf(x2) - wWh - Cer2 - GrL - wWh - other 7 
34

 
   (Loire Amont) Alf(x3) - wWh - Cer2 - Sunflower - GrL - Maize Sunflower - Cer2 10 

34
 

   (Jura) Alf(x2) - GrL - wWh - Cer2 - Maize 7 
34

 
   (Savoie) Alf(x3) - wWh - Cer2 - Sunflower - GrL - wWh - Cer2 9 

34
 

   (Ain-Rhone) Alf(x2) - Maize - GrL - wWh - Cer2 - Maize 7 
34

 
   (Alpes) Alf(x3) - wWh - Cer2 - Sunflower - wWh - Cer2 8 

34
 

   (Isère-Drome-Ardeche) Alf(x2) - wWh - Cer2 - Sunflower 5 
34

 
   (Aveyron-Lozère) wWh - Sunflower - GrL 3 

34
 

   (Garonne, W Pyrénées) Soy - Sunflower - Cer2 3 
34

 
   (Gironde, Landes, Dord) Soy - Maize - Cer2 - GrL 4 

34
 

   (Cantal, Corrèze) Alf(x3) - wWh - Cer2 - Sunflower - GrL - Maize -Sunflower - Cer2 10 
34

 

   (Cd’Azur, Gard, Héraut) wWh - Sunflower - GrL 3 
34

  

Spain   
 

(Galicia, Asturias, 

Cantabria, Basque C.) 
sBarl - Fababean - Potato - wWh 4 

35 

(N Castilla Leon) Alf – Root crop – Potato – Maize (irrigated) 4 
30 

(Mediterranean Spain) green fallow - Cereal 
Vetch (hay or green manure) – Cereal 
Chickpea - Cereal 

2 
36 

Italy (Northern Italy) Grass - wWh – Alfalfa (x2) - Maize 5 
37 

        (Central & North) Soy - Maize - Wheat 3 
38 

 wWh - Alf(x3) 5 
39 

 GC/Maize - sBarl - Clover - DWh 4 
39 

Austria (Central) sBarl - wWh - GC(x2) -sWh – Potato 6 
37 

(Foothills Alps) Alf(x3) – wWh – Sunflower – Barl – FabaBean -wWh(x2) 9 
30 

Denmark (Western) GC(x2) - Barl/Gras - Beet - Oat/Grass-Barl/Peas - Pea/Grass 6 
37 

 GC – Cabbage - Barl/Grass – Carrots - Peas/Radish-Barl 6 
 

 Sbarl/GC - GC(x3) - wWh 5 
40 

 Sbarl/GC(x2) - WWh - sOats - sBarl/Pea 5 
40 

 Sbarl/Pea - GC(x2) – sOats – wWh - SugarBeet 5 
40 

 Ley(x2) – sBarl – wWh – Maize - wBarl 6 
30 

Finland (Southern) Rye - Peas/Oat - Barl - Grass 4 
37 

               Rye - Clover Ley(x2) - Potato 4 
38 

Germany (NE) Oat - WRye - Peas - WRye - Fallow 5 
41 

 WWh - wRye - Peas - Triticale- Fallow 5 
42 

 Green fallow – wWh - Peas - Rye - sBarl 5 
43 

                (Southern) GCA - Potato - wWh - Sunflower - GCA - wWh – wRye 7 
44 

Netherlands (Central) GreenPea - sWh - Potato - KidneyBean - Onion –Carrot 6 
45 

 Potato - GC - Cereal - Cabbage - Cereal - Carrot – Peas 7 
46 

 GC(x3) - sBarl - wWh - Potato - SugarBeet 7 
47 

Sweden (South) Broadbean/Oats - Ley(x2) - SugarBeet - Lupine/oats - wWh 6 
48 

 SBarley – Ley (x2) - SugarBeet - Oats/Peas - Potato 6 
48 

 Oats/Pea - Ley (x3) - sBarl - Potato 6 
48 

             (all country) Barl - Ley(x2) - wWh - wWh - Beans 6 
49 

 Barl/Pea - Ley(x3) - wWh 5 
49 

 Oats - Ley(x3) - Oats/Peas 5 
49 

 Oats - Ley(x2) - wWh - Oats - Peas 6 
49 

Poland Potato - Wh - Oat/Peas - Cereal/Legume - Rye 5 
50 

 Potato - wWh - sBarl - CG 4 
50 

 Alf (x2) - WWh(x2) - SugarBeet - Barl 6 
30 



 

 

UK Red Clover - Potato - wWh - Oats 4 
51 

 Red Clover - wWh - FabaBeans - wWh 4 
51 

               (East England) RedClover(x2) - Potato - wWh - sBean - sWh/Clover 6 
51 

 CG(x2) - wWh - Potato - Beans - Potato - sBarl 7 
52 

 Ley(x3) - Cer(x2) 5 
53 

Latvia Barl - Red Clover - Rye - Potato 4 
54 

Norway Barl-Ley (x3) - Fodder Beet - GC - sWh - Oat/Pea 8 
55 

 Sbarl-CloverLey(x3) - Swede - Oats 6 
56 

 Barl - GC - SWh - Oats - Peas 5 
57 

Switzerland Potato - wWh/vetch - Cabbage - wWh - wBarl – GC 6 
58 

 Barl - GC(x2) - Cabbage - wWh 5 
59 

Slovakia Bean/Alf - Alf - wWh - Maize - wRape - Peas - Maize - wWh 8 
60 

Greece Clover - Maize 2 
61  

 Cereal - Green manure - Cotton 3 
62 

Romania Oats/Clover - Clover - Wh - Maize 4 
63 

 sWh/Fodder Turnip - Fodder Maize - Potato – GC 4 
64 

 Peas – wWh – Rapeseed - wWh 4 
65 

 wWh – Maize – Sunflower - Soy 4 
66 

Portugal (Alentejo) DurumWheat – Sunflower - Pea 3 
67 

Slovenia Maize – sBarl – RedClover - wWh 4 
68 

 Maize - Oats/Grass - Maize - wWh/Fodder Rape 4 
68 

 Oats - GC - Pumpkin - WWh - Maize 5 
68 

 Peas - wWh - wBarl - Maize - Oats 5 
68 

Albania Maize-wWh - Clover/Bean - wWh 4 
69 

Bulgaria Soy – sOats - Pea/Vetch - Maize 4 
70 

 Peas - wWh - Maize - Fallow 4 
71 

Croatia Soy - wWh - Oilseed - Maize 4 
72 

Estonia Barl - Red Clover - wWh - Peas - Potato 5 
73 

Lithuania Ley(Alf40%,Clov40%)(x2) - wWh - Potato - sBarl 5 
74 

Hungary Lupine (x2) - Rye - Potato 4 
75 

 Alf - wWh - Oats - Sunflower 4 
76 

w (prefix) = winter cultivation 
s (prefix) = spring cultivation 
Alf = Alfalfa 
Wh = Wheat 
sBarl = Barley 
Cer2,3 = secondary cereal 
GrL = grain legume 
GC  = Grass/Clover 
GCA = Grass/Clover/Alfalfa 

 
The overall yield of a crop rotation depends on its average N supply. In organic farming, besides 
inputs of animal manure and atmospheric deposition (see below), N is brought mainly through 
symbiotic fixation by the legume crops inserted in the rotation which introduces new N into the system.  
Symbiotic N fixation can be calculated from the N content of legume crops yield according to the 
simplified method of Anglade et al.

2,3
. 

 For grain legumes: N fix = 1.23 * Nyield 
 For fodder legumes: N fix = 1.47 * Nyield 
N content in the most common N fixing crops were taken as shown in Table S4  
 
 Table S4: Nitrogen (N) content in legume crops (

1, 77
)  

 
crop %N  

in harvested products 

Pulses in green manure 3.5 
Dry vegetables (lentils, chick peas, etc) 3.6 
Faba bean, horse bean 3.5 
Alfalfa and clover 2.8 
Non legume grass 1.25 
Natural meadow 2.05 

 
The yield of the main N fixing crops involved in the organic crop rotation listed in Table S3 is 
provided by Eurostat

8
. We used the data for pulses. For fodder legume, the data provided by the 

sources listed in Table S3 were used.  Table S5 gathers the result of these calculations. 



 

 

 
 
Table S5: Symbiotic nitrogen fixation rate of the main fixing crops involved in organic crop 
rotations in Europe 
 
Country crop Frequency in the 

rotation* 
Yield 

(tonDM/ha/yr) 

N Yield 

(kgN/ha/yr) 

N fixation 

(kgN/ha/yr) 

refs 

Albania Clover 1/4 3 84 123 
59 

 Bean 1/4 1.3 46 56 
78 

Austria Alfalfa 3/9 5.5 154 225 
37 

 Pulses 1/9 3.9 137 168 
8 

Belgium Pulses 1/6 5 175 216 
8 

 Alfalfa 1/6  200 295 
34 

Bulgaria Pulses 1/4 2.7 94 115 
8 

Croatia Pulses 1/4 2.9 103 126 
8 

Czechoslovakia Pulses 1/6 3.9 137 168 
8 

 Clover/Alfalfa 1/6 11.4 200 295 
78 

Denmark Peas 0.5/5 5.3 116 143 
37 

 Grass/Clover 2/5 7.8 160 71 
40 

Estonia Grain legume 1/5 1.4 49 60 
8 

 Clover 1/5 10 200 294 
8 

Finland Grain legume 1/5 [40% 1.4 49 60 
8 

 Clover 1/5 [40%] 9.3 260 383 
8 

 Grass/Clover 2/6 [60%] 9.3  78 
8 

France Alfalfa 2/8 [70%]  275 400 
34 

 Pulses 1/8 [70%]  60 74 
34 

 Pulses 1/3 [30%]  40 50 
34 

Germany Peas 1/5 [15%]   66 
42 

 Grass/Clover 2/7 [75%]   260 
82 

Greece Red Clover 1/3 4.1 122 179 
8 

Hungary Pulses 1/4 [50%] 1.4 51 62 
8 

 Alfalfa 1/4 [50%] 3 84 123 
8 

Ireland Grass/Clover 3/6 4.9 100 61 
8 

Italy Pulses 1/3 [40%] 3.3 115 141 
8 

 Alfalfa 2.5/5 [45%]   175 
37 

 Clover 1/4 [15%] 3.9 109 134 
39 

Latvia Clover  10 200 295 
8 

Lithuania Clover 2/5 10 200 295 
8 

Netherlands Pulses 1/6 4.1 142 175 
8 

 Grass/Clover 1/6 30 300 132 
8 

Norway Ley  7.5 154 93 
55 

Poland Pulses 1/6 1.2 42 52 
8 

 Alfalfa 1/6 4.4 123 181 
8 

Portugal Pulses 1/3 0.7 25 30 
8 

Romania Pulses 1/4 [33%] 1.7 60 73 
8 

 Clover 1/4 [33%] 4.9 137 202 
8 

 Grass/Clover 1/4 [33%] 4.9 100 61 
8 

Slovenia Pulses 1/4 [33%] 1.7 61 75 
8 

 Clover 1/4 [33%] 5.8 162 239 
8 

 Grass/Clover 1/4 [33%] 5.8 119 72 
8 

Spain Chick Pea 1/2 [30%]  40 50 
80 

 Vetch(green manure) 1/2 [20%]  70 103 
80 

 Alfalfa 1/4 [20%]  70 103 
80 

Sweden Ley 3/6 6.6 120 81 
48 

 Pulses 0.5/6 2.2 75 94 
8 

Switzerland Ley 2/5 4 107 64 
8 

 Pulses 1/5 3.9 137 168 
8 

UK Ley 3/5 [70%] 4.9 100 61 
8 

 Pulses 1/4 [30%] 3.1 109 133 
51 

 Red Clover 1/4 [30%] 10 200 295 
51 

       
*The fraction indicates the number of occurrence in the total number of years in the rotation, from the data in 
Table 1; [%] indicates the fraction of total cropland area occupied by the corresponding rotation, when several 
rotations are considered in the same country.  

 



 

 

 
Using the dominant crop rotations described in Table S3 and the figures of Table S4, the mean soil N 
input through symbiotic N fixation over the complete crop rotation cycle can be estimated for each 
country (Figure S6). It ranges from 20 to 100 kgN/ha/yr. To this should be added the N fixation by 
legume intercrops possibly inserted in the rotation before spring crops, or undersown with cereals.  
 
 

 
 

 
Figure S6. Mean of N soil input through symbiotic N fixation integrated over the whole crop 
rotation cycle of arable cropping systems described in Tables 1 and 3.  
 
 
In the elaboration of the agro-ecological scenario, because no synthetic N fertilizer input is considered 
and because symbiotic fixation is fixed a priori by the choice of a crop rotation scheme (see above), 
livestock density remains the only lever of intensification of cropping systems, through the application 
of manure. Moreover, livestock density also determines the level of atmospheric deposition of 
reduced N compounds such as ammonia (see below).  
 
As a simplified way of calculating N inputs to cropland as manure, the following calculation rules are 
applied:  
 
(i) 30% of total N excreted indoors by livestock of all kinds is considered lost to the atmosphere during 
the processes of manure management and storage 

81,82
 

Ruminants are considered to spend 0, 3 or 6 months/yr indoors in Southern, temperate or Nordic 
countries respectively. Monogastric animals are considered spending most of their time indoors or on 
non-productive land.  
 
(ii) An additional 20% loss occurs during application of manure, which will be assumed concentrated 
on arable land, including temporary grassland, but excluding permanent grassland

81,82
. 

 
(iii). Direct ruminant excretion outdoors concerns temporary grassland (leys and alfalfa or clover 
meadows) as well as permanent grassland, pro rata their respective areas. During excretion outdoors, 
20% loss of ammonia occurs, but this part of the excretion is not subject to management loss. 
 



 

 

 
 
Atmospheric total N deposition (as oxidized and reduced species, under wet and dry forms) is 
provided by the results of the EMEP model

83
 at the resolution of a 50×50-km grid over the whole of 

Europe since 1980.These data are the result of a transport and deposition model fed by national 
inventories of the sources of atmospheric pollution and validated with measurements of deposition.  
 
These data generally show a gradual decrease since 1980 in most regions, except in those with high 
livestock densities. For French regions, Le Noë et al

84
 showed that Inter-regional variability is largely 

explained by differences in livestock density (expressed in LU per km² territory), as shown in Fig. S7. 
The extrapolation to zero livestock provides a background value of 10 kgN/ha/yr, which accounts for 
about 60% of the maximum deposition rate observed in France. This background value reflects 
atmospheric deposition related to other sources than local livestock, probably mainly traffic and 
industry, including in remote regions.  
  

 
Figure S7. Relationship between atmospheric nitrogen deposition and livestock density for 
agricultural regions in France in 2006 

84
. 

 
 
Based on the results of Figure S7, a livestock-related N deposition value can be determined: 
        livestock-related deposition = 0.05 kgN/ha/yr x livestock density (in LU (LU/km². (equ 4) 
 
In  the scenario, this value is used to calculate atmospheric N deposition for each country in Europe 
(see the manuscript), as a function of livestock density (LD), assuming no change in the background 
deposition of each country: 
  deposit(scen) = deposit(current)  – 0.05 x [LD(current) – LD(scen)]    (equ 5) 
 
  
 
In coherence with the options of reconnection and circularity in the agro-ecological scenario, the re-
use of human wastes as fertilizer has been considered in the scenario. This would imply a 
paradigmatic change in the management of urban wastes, as deep as the change in the logic of 
agricultural systems we propose here for agricultural practices themselves. Simple technologies for 
source collection of human urine (which contains 80% of the excreted nitrogen

25
), recovery or 

concentration of N from urine as well as field application as fertilizer are already available
85,86
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